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Abstract
It has been proven by Rosu and Cornejo-Pérez (Rosu and Cornejo-Pérez 2005
Phys. Rev. E 71 046607, Cornejo-Pérez and Rosu 2005 Prog. Theor. Phys. 114
533) that for some nonlinear second-order ODEs it is a very simple task to find
one particular solution once the nonlinear equation is factorized with the use
of two first-order differential operators. Here, it is shown that an interesting
class of parametric solutions is easy to obtain if the proposed factorization has
a particular form, which happily turns out to be the case in many problems of
physical interest. The method that we exemplify with a few explicitly solved
cases consists in using the general solution of the Riccati equation, which
contributes with one parameter to this class of parametric solutions. For these
nonlinear cases, the Riccati parameter serves as a ‘growth’ parameter from the
trivial null solution up to the particular solution found through the factorization
procedure.

PACS numbers: 02.30.Jr, 02.30.Hq, 11.30.Pb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Despite powerful integrability methods, such as the Lie group-theoretical approach, Painlevé
analysis, existence of Lax representations and the associated inverse scattering transforms, the
task of obtaining solutions of nonlinear second-order partial and ordinary differential equations
(ODEs) remains one of the most difficult problems in mathematical physics; in some cases,
even finding one particular solution turns out to be a very difficult matter [3, 4]. However,
in a number of cases, it has been proven that finding one particular solution turns out to be
easier than expected. In the case of polynomial nonlinearities, Rosu and Cornejo-Pérez [1, 2],
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working with a factorization procedure stemming from a work of Berkovich [5], have found
that if the second-order nonlinear differential equation can be factorized into two first-order
differential operators then it is easy to find a first particular solution for the problem. They
considered a nonlinear equation of the type

ü + g(u)u̇ + F(u) = 0, (1)

where the dots represent derivatives with respect to the independent variable τ , which is usually
the traveling coordinate of a reaction–diffusion equation [1]. The method they proposed was
to factorize this equation in the following form:

[D − φ2(u)][D − φ1(u)]u = 0, (2)

(where D ≡ d
dτ

) which implies the following conditions on the functions φi(u)

−
(

φ1 + φ2 +
dφ1

du
u

)
= g(u) (3)

φ1φ2 = F(u)

u
. (4)

If equation (1) can be factorized as in equation (2), then a first particular solution, say u1, can
be easily found by solving

[D − φ1(u)]u = 0. (5)

2. Riccati-parameter solutions

Of course, obtaining one solution of a nonlinear second-order ODE does not guarantee that
one may find more general solutions. However, what Rosu and Cornejo-Pérez found was that
in many cases (some of which will be described below) the function φ1(u) turned out to be
a linear function of the dependent variable u. Hence, equation (5) turns out to be a Riccati
equation for this variable, which is very fortunate, since we already know how to find the
general solution for this equation once a particular solution is known.

The appearance of the Riccati equation in linear second-order differential equations is
very common. In particular, it was very successfully exploited by Mielnik to find potentials
which are isospectral to the simple harmonic oscillator potential [6], and it is a cornerstone for
all SUSY developments [7]. However, it has not been used to solve nonlinear second-order
differential equations at least in the way we present here.

Thus, if φ1 is of the form φ1(u) = c1u + c2, equation (5) transforms into the Riccati
equation

u̇ − c1u
2 − c2u = 0, (6)

and if a particular solution u1 of this equation is known, then the general solution can be found
as [6]

uλ,c1 = u1 +
eI1

λ − c1I2
, (7)

where

I1(τ ) ≡
∫ τ

τ0

(2c1u1(τ
′) + c2) dτ ′ (8)

and

I2(τ ) ≡
∫ τ

τ0

eI1(τ
′) dτ ′. (9)
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Note that for

λs = c1I2(τ ), (10)

a singularity may develop.
Equation (7) provides in turn what we call as a Riccati-parameter solution of the nonlinear

equation. We note that the first parameter, c1, is essentially the slope of the factorization
function φ1, whereas the λ parameter can be chosen in such a way as to prevent this solution
from possessing singularities [6], although for nonlinear differential equations this is not an
absolutely prohibitive issue. It will be seen in the examples given in the following that the
latter parameter acts like a label in this class of solutions placing them between the trivial null
or constant solution and the particular solution given by equation (5).

3. Examples of physical interest

In this section, we find the explicit form of the Riccati-parameter solution for three nonlinear
equations of physical interest that are polynomial type Liénard equations, i.e., similar to
equation (1) but with F(u) a polynomial of order two and three in our cases.

3.1. Modified Emden equation

We start with the modified Emden equation

ü + αuu̇ + βu3 = 0, (11)

for which the first rigorous study has been done by Painlevé more than a century ago [8] who
got solutions for β = α2/9 and β = −α2. Recently, Chandrasekar et al [9] provided a detailed
discussion of this equation from the point of view of the modified Prelle–Singer procedure
that gives the construction of the solution in terms of elementary functions if such a solution
exists [10], although Iacono [11] noted that much simpler connections with the Abel equation
could be used to get the solutions. For the remarkable physical applications, see [9].

Employing φ1 = a1
√

βu and φ2 = a−1
1

√
βu, where a1 = −α±

√
α2−8β

4
√

β
, one particular

solution is [2]

u1 = − 1

a1
√

β(τ − τ0)
. (12)

Hence, by using equation (7) one can find that the two-parameter solution of equation (11) is

uλ = − 1

a1
√

β(τ − τ0)
+

1

λ(τ − τ0)2 + a1
√

β(τ − τ0)
. (13)

In this case it is instructive to note that when |λ| runs from zero to infinity, the uλ solution
goes from the trivial solution u = 0 to the particular solution u = u1, as can be deduced from
equation (13) and graphically seen in figure 1.

3.2. Convective Fisher equation

We pass now to the convective Fisher equation [12]

ü + 2(ν − µu)u̇ + 2u(1 − u) = 0. (14)

The second term corresponding to convection is introduced to describe mechanical transport
in competition with diffusive transport or cases when external bias fields are present. In the
context of population dynamics which is typical for the Fisher equation, it has been used by
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Figure 1. uλ(τ) in the case of the modified Emden equation for λ = −0.2,−0.4,−1,−6, from
top to bottom respectively, and a1

√
β = −1.
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Figure 2. Convective Fisher uλ(τ) for λ = −0.2,−0.4,−1,−6, from top to bottom respectively,
and µ = 1.

Walsh et al [13] to simulate the population mobility according to spatial gradients in the food
supply.

Rosu and Cornejo-Pérez found that for ν = µ/2 + µ−1, the factorization functions are
φ1 = −µ(1 − u) and φ2 = −2/u. Hence, a particular solution for this equation will be [2]

u1 = [1 ± exp(µ(τ − τ0))]
−1. (15)

The λ-parameter solution can be readily obtained in the form

uλ = u1 +
e−µ(τ−τ0)

[e−µ(τ−τ0) ± 1][λ(e−µ(τ−τ0) ± 1) − 1]
. (16)

Once again, u0 = 0 and u∞ = u1. For the graphical representation see figure 2.
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Figure 3. Cubic Liénard uλ(ξ) solutions for λ = 0.7, 0.9, 1.1, 1.3, from top to bottom respectively,
in the case A = C = 1, B = 2 (� = 0) and a1 = 1.

3.3. Generalized Liénard equation

Consider now the generalized Liénard equation for cubic nonlinear oscillators

ü + g(u)u̇ + F3 = 0, (17)

where F3(u) = Au + Bu2 + Cu3. The previous equations can be seen as particular cases of
this one. With � = √

B2 − 4AC, Rosu and Cornejo-Pérez found that using

φ1 = a1

(
B + �

2
+ Cu

)
, φ2 = a−1

1

(
B − �

2C
+ u

)

for

g(u) = −
[
B + �

2
a1 +

B − �

2C
a−1

1 +
(
2Ca1 + a−1

1

)
u

]
(18)

the following particular solution could be obtained [2]:

u1(τ ) =
B+�

2

exp
(−a1

B+�
2 (τ − τ0)

) − C
=

B+�
2 exp

(
a1

B+�
2 (τ − τ0)

)
1 − C exp

(
a1

B+�
2 (τ − τ0)

) . (19)

Now, using equation (7) and denoting ξ = τ − τ0, we can see that the two-parameter solution
in this case is

uλ(ξ) = u1 +
B+�

2 exp
(−a1

B+�
2 ξ

)
[
exp

(−a1
B+�

2 ξ
) − C

] [(
λB+�

2 − 1
)

exp
(−a1

B+�
2 ξ

) − λC B+�
2

] . (20)

Varying λ between zero and infinity, the Riccati-parameter solutions go from the null solution
to u1. Plots of uλ for several values of λ are displayed in figure 3.

3.4. Other cases of physical interest

The examples we have provided here are not the only possible cases that can be solved with
this method, but they show the typical solutions to be found. Other examples where Riccati-
parameter solutions can be obtained in this way are the generalized Burgers–Huxley equation
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with δ = 1, γ = 1, the generalized Fisher equation, with n = 2, the Dixon–Tuszynski–
Otwinowski type equation, with n = 4, and the Fitzhugh–Nagumo equation [1]. The linear
factorization functions φ1 of all these cases are given in [1]. Last but not the least, we
would like to comment on the possible physical interpretation of the Riccati parameter λ. We
follow the works of Barton et al [14] and Monthus et al [15] to assert that λ is related to the
introduction of finite interval boundaries on the abscissa of the problem. This is very well
described in section II A of [15] to which the interested reader is directed. Essentially, the
introduction of boundary conditions at certain points on the axis generates a modulation of the
particular solution as presented here, and the λ parameter can be fixed through the boundary
conditions. When the boundary is sent to infinity the original particular solution is recovered.

In conclusion, we introduced here an interesting class of parametric solutions of a number
of physically relevant nonlinear differential equations. They cover the space between the null
or constant solution and the particular solution obtained by a simple factorization method
proposed previously.
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We would like to thank Dr O Cornejo-Pérez for a careful reading of the first draft of this work.
The second author wishes to thank CONACyT for partial support through project 46980.

References
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[2] Cornejo-Pérez O and Rosu H C 2005 Prog. Theor. Phys. 114 533 (Preprint math-ph/0504055)
[3] Wang X Y 1988 Phys. Lett. A 131 277
[4] Hereman W and Takaoka M 1990 J. Phys. A: Math. Gen. 23 4805
[5] Berkovich L M 1992 Sov. Math. Dokl. 45 162
[6] Mielnik B 1984 J. Math. Phys. 25 3387
[7] For a review, see Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267 (Preprint hep-th/9405029)
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